

NORTH SYDNEY BOYS HIGH SCHOOL

2011 YEAR 12 HSC ASSESSMENT TASK 1

Mathematics

Extension 2

Examiner: S. Ireland

General Instructions

- Working time 55 minutes
- Write on both sides of the paper (with lines) in the booklet provided
- Write using blue or black pen
- Board approved calculators may be used
- All necessary working should be shown in every question
- Each new question is to be started on a **new page**.

Attempt all questions

Class Teacher:

(Please tick or highlight)

- O Mr Fletcher
- O Mr Ireland
- O Mr Rezcallah

Student Number:

Question	1	2	3	4	5	6	Total	Total
Mark	11	- 9	10	8	7	8	53	100

4

- (a) Let z be the complex number 2 $cis(-\frac{\pi}{3})$. On a single, half-page Argand diagram, plot the points: z, \bar{z}, z^2 , and $\frac{1}{z}$.
- (b) Given z = 1 i and $\omega = -1 + i\sqrt{3}$,
 - (i) Express $\frac{1}{z}$ in a + ib form (where a and b are real)
 - (ii) Calculate ωz in a + ib form
 - (iii) Find arg z and arg ω
 - (iv) Hence find arg (ωz)
 - (v) Hence prove $\sin \frac{5\pi}{12} = \frac{\sqrt{2}(1+\sqrt{3})}{4}$

Question 2 (9 marks) Start a new page.

- (a) If ω is a non-real root of $z^3 = 1$, then
 - (i) Show that $1 + \omega + \omega^2 = 0$
 - (ii) Evaluate $(1-3\omega+\omega^2)(1+\omega-8\omega^2)$
- (b) If 1 + i is a zero of $P(x) = 3x^3 7x^2 + 8x 2$, then
 - (i) Find all zeroes of P(x) 2
 - (ii) Factorise P(x) over \mathbb{R}
- (c) Factorise $P(x) = 3x^4 + 8x^3 + 6x^2 1$ completely given that P(x) = 0 has a root of multiplicity 3.

Question 3 (10 marks) Start a new page.

- (a) (i) Find real numbers x and y such that $(x + iy)^2 = -3 4i$
 - (ii) Hence solve the equation $z^2 3z + (3 + i) = 0$
- (b) On separate Argand diagrams sketch the locus of a point which satisfies:
 - (i) |z-1| = |z-i|
 - (ii) $z^2 (\bar{z})^2 = 16i$
- (c) Sketch the region satisfying both $0 \le \arg{(z-2)} \le \frac{\pi}{2}$ and $\mathrm{Im}(z) \le 1$

Question 4 (8 marks) Start a new page.

Given that $x^3 - 2x^2 - 5 = 0$ has roots α, β, γ ,

(a) Evaluate
$$\alpha^2 + \beta^2 + \gamma^2$$

2

(b) Evaluate
$$\alpha^3 + \beta^3 + \gamma^3$$

2

(c)Write equations with roots:

$$(i)\frac{1}{\alpha},\frac{1}{\beta},\frac{1}{\gamma}$$

2

2

(ii)
$$\alpha + \beta + 2\gamma$$
, $\alpha + 2\beta + \gamma$, $2\alpha + \beta + \gamma$

2

Question 5 (7 marks) Start a new page.

- (a) Sketch z_1 and z_2 on an Argand diagram given that $|z_1| = |z_2| = |z_1 z_2|$ Hence find the magnitude of $\arg\left(\frac{z_1}{z_2}\right)$
- (b) (i) Sketch $|z 15i| \le 5$ on an Argand diagram.
 - (ii) Find the complex number z with the least positive argument satisfying $|z 15i| \le 5$. (Give your answer in a + ib form).

Question 6 (8 marks) Start a new page.

- (a) (i) Show the roots of $z^5=1$ on a unit circle on an Argand diagram. (ii) Hence show that $\cos\frac{2\pi}{5}+\cos\frac{4\pi}{5}=-\frac{1}{2}$
- (b) Sketch the locus $arg(1-\frac{1}{z})=\frac{\pi}{4}$ and find its Cartesian equation.

END OF EXAMINATION

Q1

(a)
$$Z = 2 \operatorname{cis}\left(-\frac{\pi}{3}\right)$$

$$\overline{Z} = 2 \operatorname{cis} \overline{Z}$$

$$\overline{Z}^2 = 4 \operatorname{cis} \overline{Z}$$

$$\overline{Z} = \frac{1}{2} \operatorname{cis} \overline{Z}$$

SOLUTION

 $\left(* \frac{1}{2} & \overline{2} \text{ must have } \right)$

* must show data on Sketch.)

////

(b) (i)
$$\frac{1}{z} = \frac{1}{2} + \frac{1}{2}i$$

(iii)
$$Z = 1 - i$$
 i arg $Z = -\frac{\pi}{4}$
 $\omega = -1 + i\sqrt{3}$ i arg $\omega = \frac{2\pi}{3}$

(IV)
$$arg(\omega z) = \frac{5\pi}{12}$$

ALT:
$$WZ = 2J2$$
 cis $\frac{5\pi}{12}$
& $wZ = (3-1) + i(J3+1)$, then equate imag. parts

[* must

use previous

part of question]

=
$$\sqrt{3+1}$$
 $2.\sqrt{2}$

(V) $Sin \frac{5\pi}{12} = \frac{Im(\omega z)}{|\omega z|}$

$$\frac{1}{12} = \frac{\sqrt{2} (\sqrt{3}+1)}{4}$$
as required.

```
Question 2:
(a) (i) w^3 = 1
         w^3 - 1 = 0
       (w-1)(w^2+w+1)=0.
           :. w^2 + w + | = 0
   (ii) (1-3w+w^2)(1+w-8w^2)
       = (1+w^2-3w) (1+w-8w^2)
       = (-W - 3W) (-w^2 - 8w^2) = (-4w)(-9w^2)
      = +(4\omega)(9\omega^2) = 36\omega^3 = 36.
                                                                   V for 36
(b)(i) + i is a zero => 1-i is a zero.
                   \alpha = \frac{7}{3} - \lambda = \frac{1}{3}
   (ii) P(x) = (3x - 1) (x^2 - Sum x + P)
  Product = P = (1+i) (1-i) = 1-i2=2. 7 =2-2x+2.
      Sum = S = 1 + i + 1 - i = 2.
    P(x) = (3x-1)(x^2-2x+2)
    or:
                                                                won't get the
        \frac{P(x) = \left(2 - \frac{1}{3}\right) \left(3x^2 - 6x + 6\right)}{= \left(3x - 1\right) \left(x^2 - 2x + 2\right)}.
 (c) P(x) = 3x^4 + 8x^3 + 6x^2 - 1.

P'(x) = 12x^3 + 24x^2 + 12x.
     P''(x) = 36x^2 + 48x + 12 = 12(3x^2 + 4x + 1)
              = 12(3x+1)(x+1)
```

years	Question 2 - (cont'd)
	Question a feet as
	/ >/ .
S Committee S E. Millions	P'(-1) = P''(-1) = 0
Promotory - Training	x = -1 is a triple root.
	$S = -\frac{b}{a} = -\frac{8}{3}.$
	$-1+-1+-1+\beta=-\frac{8}{3}$.
	$-3 + \beta = -\frac{8}{3}.$
	$\beta = 3 - \frac{8}{3} = \frac{1}{3}$ V for (2+1)
`	
;	$P(x) = (x+1)^3 (3x-1).$ torrect factor
	2ND Hethod:
	-1 3 8 6 0 -1
	$\frac{-3 -5 \cdot 1}{(3x^3 + 5x^2 + x + 1)(x + 1)}$
1	3 5 1 1 0
	-1 3 5 1 1 $(x+1)^2(3x^2+2x-1)$
	$-1 \int_{-3}^{3} \frac{5}{-2} \cdot 1 \cdot 1 + (x+1)^{2} (3x^{2} + 2x - 1)$
	3 2 -1 0
<u>)</u>	$P(x) = (x+1)^2 (x+1)(3x-1)$
	$P(x) = (x+1)^3 (3x-1).$
	Again $P(x) = (x+1)^3 (x-\frac{1}{3})$ will not get the mark. If students do the same mistake twice, they are penalised once for this error.
	If students do the same mistake twice,
	they are penalised on ce for this knor.
) 9 2	
	•

(a) (i)
$$(x+iy)^2 = x^2-y^2 + 2xyi$$

$$\int_{x^2-y^2} = -3$$

$$xy = -2$$

$$x^2 - \frac{4}{x^2} = -3$$

$$(x^2-1)(x^2+4) = 0$$

$$(x^2-1)(x^2+4) = 0$$

 $x = 1 \text{ or } -1 \text{ (x is real)}$
 $y = -2 \text{ or } 2$

So answer is x=1, y=-2 or x=-1, y=2.

(ii)
$$z^2 - 3z + (3+i) = 0$$

$$z = 3 \pm \sqrt{9 - 4(3+i)}$$

$$= 3 \pm (1-2i)$$

: Z = 2-i or 1+i

(b) (i)
$$|z-1| = |z-i|$$

(* trust show perpendialer bisealer or five equation)

(ii) $z^2 - (\overline{z})^2 = 16i$ $\therefore (z - \overline{z})(z + \overline{z}) = 16i$ $2yi \cdot 2x = 16i$ xy = 4

(c) $0 \leqslant \arg(z-2) \leqslant \frac{\pi}{2}$ and $\operatorname{Im}(z) \leqslant 1$

10

2011 HSC Ext.2 Task

$$x^3 - 2x^2 - 5 = 0$$

(a)
$$\alpha + \beta + \delta = 2$$

 $\alpha + \beta + \alpha + \beta = 0$
 $\alpha + \beta + \alpha + \beta = 0$
 $\alpha + \beta + \delta = 0$

(c) (i)
$$\left(\frac{1}{x}\right)^3 - 2\left(\frac{1}{x}\right)^2 - 5 = 0$$

$$\frac{1}{x^3} - \frac{2}{x^2} - 5 = 0$$

$$\frac{1}{x^3} - 2x - 5x^3 = 0$$

(ie
$$5x^3 + 2x - 1 = 0$$
)

(ii) Since
$$\chi + \beta + \delta = 2$$
, we want roots $x + 2, \beta + 2, \delta + 2.$

equation is $(x-2)^3 - 2(x-2)^2 - 5 = 0$

$$\chi^3 - 6\chi^2 + 12\chi - 8 - 2\chi^2 + 8\chi - 8 - 5 = 0$$

$$x^{3} - 8x^{2} + 20x - 21 = 0$$

2011 HSC Ext. 2 Task 1

arg
$$\left(\frac{Z_1}{Z_2}\right) = \arg Z_1 - \arg Z_2$$

= $\pm \frac{\pi}{3}$ (as Δ is equilateal)
(ie magnitude = $\frac{\pi}{3}$)

$$d^{2}=15^{2}-5^{2}$$
= 200
$$(d=10\sqrt{2})$$
= d cost
$$= 10\sqrt{2} \cdot \frac{5}{15}$$

$$= \frac{10\sqrt{2}}{3}$$

Likeurse, Z's y coordinate
= 10-12. 10-12 = 40

$$\therefore Z = \frac{10\sqrt{2}}{3} + \frac{46}{3} i$$

Re
$$\left(1-\frac{1}{2}\right) = Im \left(1-\frac{1}{2}\right)$$
 since angle is $\sqrt{1/4}$.

$$\frac{1}{z} = \frac{1}{x + iy} = \frac{1}{x + iy} \cdot \frac{x - iy}{x - iy} = \frac{x - iy}{x^2 + y^2}$$

$$\frac{1-\frac{1}{2}=1-(x-iy)}{(x^2+y^2)}=\frac{x^2+y^2-x+iy}{x^2+y^2}.$$

Re
$$\left(1-\frac{1}{2}\right) = \chi^2 + y^2 - \chi$$

$$I_{m}\left(1-\frac{1}{2}\right)=+\frac{y}{x+y^{2}}$$

$$x^{2} + y^{2} - x = + y$$

$$x^{2} - x + y^{2} + y = 0$$

$$x^{2} + y^{2} - x = + y.$$

$$x^{2} - x + y^{2} - y = 0.$$

$$x^{2} - x + 1 + y^{2} - y + 1 = \frac{1}{4} + \frac{1}{4}.$$

$$(x-\frac{1}{2})^2 + (y-\frac{1}{2})^2 = \frac{1}{2}$$
 $y > 0$

:. Circle of Lentre
$$(\frac{1}{2}, \frac{1}{2})$$
 and $r = \frac{1}{\sqrt{2}}$.

Low is a majorar of this circle.

$$\frac{y}{x^2+y^2-x} =$$

$$x^{2} + y^{2} - x = y.$$

$$x^{2} + y^{2} - x - y = 0.$$

$$x^2 + y^2 - x - y = 0$$

